Chemical and structural characterization of copper adsorbed on mosses (Bryophyta).
نویسندگان
چکیده
The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+).
منابع مشابه
The first documented record of Sphagnum riparium (Bryophyta: Sphagnaceae) from Spitsbergen
Sphagnum riparium (Bryophyta) is recorded and described from the Wedel Jarlsberg Land on Spitsbergen, the Arctic Svalbard Archipelago. It is the northernmost known population of the species in the Northern Hemisphere. The distribution of the two known Sphagnum species in the Hornsund area, viz. S. riparium and S. squarrosum is mapped and described.
متن کاملStructural and Optical Behavior of Cu Doped Au Nanoparticles Synthesized by Wet-Chemical Method
The nanoparticles of gold doped with various percentage of copper (Cu 10%, 25%, 75%) were synthesized by wet-chemical method at room temperature. Copper (II) sulfate and gold (III) chloride trihydride was taken as the metal precursor and ascorbic acid as a reducing agent and anhydride maleic as surfactant. The reaction is performed with high-speed stirring at room temperature under nitrogen atm...
متن کاملStructural and Optical Behavior of Cu Doped Au Nanoparticles Synthesized by Wet-Chemical Method
The nanoparticles of gold doped with various percentage of copper (Cu 10%, 25%, 75%) were synthesized by wet-chemical method at room temperature. Copper (II) sulfate and gold (III) chloride trihydride was taken as the metal precursor and ascorbic acid as a reducing agent and anhydride maleic as surfactant. The reaction is performed with high-speed stirring at room temperature under nitrogen atm...
متن کاملNewly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses).
UNLABELLED PREMISE OF THE STUDY The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species a...
متن کاملThe Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method
In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of hazardous materials
دوره 308 شماره
صفحات -
تاریخ انتشار 2016